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ABSTRACT

A major problem in object oriented video coding is the
efficient encoding of the shape information of arbitrarily
shaped objects. Efficient shape coding schemes are also
needed in encoding the shape information of Video Object
Planes (VOP) in the MPEG-4 standard. In this paper, we
present an efficient method for the lossy encoding of object
shapes which are given as 8-connect chain codes [1]. We
approximate the object shape by a second order B-spline
curve and consider the problem of finding the curve with
the lowest bit rate for a given distortion. The presented
scheme is optimal, efficient and offers complete control over
the trade-off between bit-rate and distortion. We present
results with the proposed scheme using objects shapes of
different sizes.

1. INTRODUCTION

This research is motivated by the importance of shape cod-
ing within the MPEG-4 standard [2], and in object oriented
video coding [3]. In this paper we refer to the shape infor-
mation of a single object as a boundary (sometimes also
referred as contour). We measure the performance or rate
of a shape coding scheme with the relative measure e in bits
per boundary point (bbp). Rate e is calculated by dividing
the total rate needed to encode the boundary approxima-
tion by the number of boundary points. For lossy encoding,
using a coding performance measure is only meaningful if
the distortion measure is also known.

A simple way to represent object boundaries is with the
use of a chain code. Freeman [4] originally proposed the
use of chain coding for boundary quantization and lossless
boundary encoding. The 8-connected chain code encodes
one of the 8 possible steps to get from a pixel to one of its
closest neighboring pixels with a rate of 3 bbp.

In [5, 6] vertices were found in an optimal way to ap-
proximate boundaries with polygons. In this paper we ex-
tend this lossy boundary encoding approach and approxi-
mate boundaries with quadratic uniform B-splines. An it-
erative encoding approach employing third order B-spline
curves was proposed in [7]. The results, however, are not
unique nor optimal and depend on the initial curve.

In the following the problem to be solved is formulated
in Sec. 2 and the proposed algorithm is developed in Sec. 3.

Experimental results are described in Sec. 4 and conclusions
in Sec. 5.

2. PROBLEM FORMULATION

The goal of the proposed algorithm is to find a second order
B-spline curve that approximates a given boundary using
the smallest number of bits, without exceeding an allow-
able distortion. In this constrained optimization problem
we have to find a set of control points - defining the B-spline
curve - that can be encoded with the lowest possible rate
and the approximation error (distortion) must be below a
certain limit. Once we find an optimal solution to this prob-
lem we are able to find a solution to the dual problem, that
of finding a B-spline curve approximation with the lowest
possible distortion given a maximum rate R4z, iteratively.

Definition of a B-spline Curve: A B-spline is a
specific curve type from the family of parametric curves.
It conmsists of one ore more curve segments. Each curve
segment is completely defined by (n+1) control points where
n defines the order of the curve. The second order B-spline
curve segment @, with control points (py—1,pu,pu+1) and
the constant base matrix M is defined as follows:

Qu(pu-1,pu;put1,t) =T - M- P
0.5 —-1.0 0.5
=[t t 1]-[—1.0 1.0 0.0]
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for 0 <t <1, and 0 otherwise

Pu,z and py,, are the horizontal and vertical coordinates
of control point P,, respectively. Every point of the curve
segment can be calculated with Eq. (1) by letting ¢ vary
from 0 to 1. Every curve segment starts (¢ = 0) exactly
midway between the first and the second control point, and
ends (¢t = 1) exactly midway between the second and the
third control point. Note that every curve segment shares
control points with its neighboring curve segments; control
points p,—1 and p, are used by the previous curve segment
Qu-1, and p, and p, 41 are used by the next curve segment
Qu+1. When we use a double point, such as p,—1 = p., the



curve segment Q, will begin exactly at the double control
point. We apply this property at the beginning and the end
of the curve. The reason for choosing the B-spline with the
lowest possible order (n=2) is to keep the complexity of the
curve, and the proposed algorithm, small. Note that a first
order B-spline is a polygon.

Notation: The following notation will be used. Let
B = {bg,...,bng -1} denote the boundary which is an or-
dered set. b; is the i-th point of B and Np is the total
number of points in B. Let P = {po,...,pnp+1} denote
the set of control points of the B-spline curve, which is also
an ordered set, with Np the total number of curve seg-
ments. Every B-spline curve segment is defined by three
control points py—1,pn and py+1, henceforth denoted by
Qu(pu—1,Ppu,Pu+1) without the use of ¢ as in Eq. (1), or
simply by Q.. We assume that the locations of the control
points of the curve are encoded using a predictive scheme
where 7(py—1,Pu,Pu+1) is set equal to the number of bits
needed to encode the relative location of control point p,41
if the locations of p,_1 and p, are known.

Distortion Measure: In general we are interested in
a curve distortion measure which can be used to determine
the approximation quality of an entire curve. We chose the
mazimum absolute distance between the original boundary
and its approximation as distortion measure. The distor-
tion function measures the absolute distance between every
boundary point and the closest point of its approximated
representation. If we imagine a distortion-band with width
2 - Doz along the boundary B, a B-spline approximation
must therefore always be inside the band in order to satisfy
the maximum absolute distance distortion requirement. We
define the distortion function d for a single curve segment
as follows:

d(pu—-1,Pu, Pu+1)
0: @ inside band (2)
oo : any point of @, outside band

A distortion band can be defined by assigning all pixels
to the band that are within a certain distance D4, from
every boundary pixel. For our experiments we chose a dis-
tortion band with a sub-pixel resolution of 1/3 pixel (see
Figure 1). Eq. (2) is implemented by quantize the curve
segment @, to 1/3 pixel resolution in a first step. In a sec-
ond step every curve pixel is tested whether it is located
inside or outside the distortion band in order to determine
the output value of d.

Admissible Control Point Set: From a theoretical
point of view, the set of admissible control points for a B-
spline boundary approximation should contain all pixels in
the image plane. In order to keep the algorithm efficient, we
restrict the control points to a set of relevant locations. We
call this the set of admissible control points A and define it
as a band along the boundary B, where the band is deter-
mined by Wiaz. Winaee is measured from the center of the
boundary pixel to the center of the admissible control point
pixel. Set A must also be ordered to employ the presented
boundary approximation algorithm. We therefore propose
to order set A by assigning all points of A to their nearest
boundary point and then imposing the order of the bound-
ary onto the set A. Details on the assigning algorithm can
be found in [6].
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Figure 1: Implementation of Distortion Measure d(-): The
distortion band of width 2D, 4, along the object boundary
B consists of sub-pixels with 1/3 pixel resolution.

3. THE SHAPE CODING ALGORITHM

Our approach for finding an optimal B-spline approxima-
tion for a given boundary is to model the set of all possi-
ble B-spline curves with a weighted directed acyclic graph
(DAG). Once we have defined a graph, we find the best
boundary approximation with a shortest path algorithm.
In this paper we use the terms state and vector instead of
the terms verter and edge commonly used in graph theory.

Figure 2 illustrates in the form of an example how a
DAG is derived from a boundary (Np = 7) and how the
shortest path solution leads to a lossy shape approxima-
tion. In Figure 2.A the admissible control point set A is
equal to the set of boundary points B; in this case the only
valid control point locations are boundary pixels. The rea-
son of A being very small is to keep the complexity of this
example as low as possible. The DAG in Figure 2.B consists
of states and vectors. Several states are associated with a
single admissible control point a;. Every state is uniquely
described by two admissible control points (aj,a;), where
a; refers to the state’s connecting previous state, with the
condition j < i for the indices'. A vector E starts at control
point p, = a; and ends at control point p,4+1 = a;.

The curve segment distortion d(-) of Eq. (2) can be
combined with the segment rate r(-) by defining a weight
function w for the vectors as follows,

W(Pu—1, Pu, Put1) (3)
= T(pu—l,pu,Pu+1) + d(pu—lypu,Pu+1)

Note that w is equal to the rate for all the curve segments
which satisfy the distortion constraint of Eq. (2), but infi-
nite for those which do not. Eq. (3) has three input vari-
ables; the first two variables p,_1 and p, represent the two
admissible control points associated with the state where
the vector begins and the third variable p,4+: is the ad-
missible control point associated with the state where the
vector ends. Every state together with a vector represents a

IThe following exception is necessary to allow double control
points at the beginning and the end of the curve : ¢ = j if
{it=0,i=Np—1}



B-spline curve segment, so that any path in the DAG from
state (ao,ap) to state (as,as) is a possible curve approxi-
mation. Let R)(kai,aj) be the best total rate of the path from
the first state (ao,ao0) to state (ai,a;) and Ry, q;) 18 the
sum of all the weights of that path. Ptr(a;,a;) is a back
pointer that is used to remember that path.

The task of the shortest path algorithm is to find a
path from state (ao, ao) to state (as,as) with the lowest to-
tal weight, which is clearly R{, . . Because we interpret
the length of a vector as the number of bits necessary to
encode that vector, the shortest path is the path with the
lowest total bit-rate. Once a shortest path has been found
(Figure 2.C), all admissible control points assigned to the
states of this path (Figure 2.D) define completely the con-
trol points for the B-spline approximation. We are using
the existing single source DAG shortest-path algorithm [8]
which is even faster than Dijkstra’s algorithm because of
the acyclic nature of the DAG.

Again, note that the definition of the weight function
w leads to a length of infinity for every path that includes
a curve segment with an approximation error larger than
D,o. Therefore a shortest path algorithm will not select
a path with one or more distorted curve segments.

Control Point Encoding Scheme: So far, any con-
trol point encoding scheme which satisfies the assumption
that the control points are encoded differentially, i.e., the
rate to encode point p,+1 depends only on the previous two
points, py,—1 and p,, could have been used. In this para-
graph we present a specific control point encoding scheme
to encode the vector E, between the control points p, and
pu+1- We encode the vector between two control points
by an angle o and a run 8, which form the symbol («,3).
We employ a logarithmic code [6] for encoding the runs
(3. In this scheme the run of one pixel length has a code-
word length of 2 bits and the longest encodable length of
15 pixels requires 5 bits to encode. In natural boundaries,
the arrival direction of a vector is highly correlated with
the departure direction of the following vector. This im-
plies that the arrival direction should be used to predict
the departure direction. We predict that the absolute an-
gle of the departure angle is the same as the absolute angle
of the arrival angle. We propose to encode only the four
most probable difference angles {—90°, —45°, +45°,+90°},
where 0° is the direction of the previous vector. Clearly
we need only 2 bits for the angle information «. The rate
function r(py—1,Ppu,Pu+1) must consider the case when a
vector cannot be encoded; that is, either when the vector
is longer than 15 pixels or the difference angle is not one
of the valid angle values. If this happens, the rate r is set
equal to infinity.

4. EXPERIMENTAL RESULTS

To demonstrate the proposed shape coding scheme we en-
coded three different objects boundaries (Shapes 1, 2 and
3) with 70, 158 and 257 boundary points. For the encoding
simulations we varied the maximum distortion D4, from
0.4 to 3.0 pixels. We set the width Wiy,4, of the admissible
control point band A equal to 1.0 for all our experiments.
The rate to encode the absolute position of the first control
point is neglected since it depends on the size of the image.

Figure 3 shows the performance of the shape coding algo-
rithm in form of a rate-distortion curve. Average encoding
rates e in the range of 0.70 ...0.84 bbp were achieved in
our experiments with distortion values of D,..=1.0, and
e=0.57 ...0.64 with Dy;,.,=2.0. Figure 4 shows the origi-
nal object shape of Shape 2 and three approximations with
distortion values of 0.8, 1.4 and 3.0. In Figure 5 the B-
spline curve approximation as well as the distortion band
(Dma»=1.0) for Shape 1 are shown.

5. CONCLUSIONS

The contribution of this paper is a general and clear math-
ematical description how to approximate a given object
boundaries by a B-spline curve. Based on the mathematical
model we find a optimal solution in terms of the bit-rate for
the stated problem. Existing and future shape coding al-
gorithms can be compared with the described method. For
example the bit-rate efficiency of a low complexity shape-
coder can be assessed if the optimal solution is known. As
was also mentioned earlier higher order curves as well as
distortion bands of variable width can be incorporated into
the proposed algorithm in a straightforward way.
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@ Set of admissible control points A={a, a, ... ag}, where A=B
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Figure 2: Approzimation of boundary B through a B-spline
curve: Once a set of admissible control points A is defined
(A), a DAG can be defined (B). The shortest path algo-
rithm finds a set of control points of the shortest path (C)
from state (ao,ao) to state (as,as). The control point set
defines the B-spline curve approximation (D) of the original
boundary.
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Figure 3: Rate-Distortion Curve: Shape encoding bit-rate e

in bits per boundary point (bbp) vs. the maximal distortion
Dma:ﬂ .
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Figure 4: Object shape approximations of shape 2 with
different distortion values.

* Control points - B-spline + Knots

Figure 5: B-spline approximation and distortion band
(width = 2 - Dy = 2 - 1.0) of Shape 1. Bit-rate e=0.84
bbp, 59 bits, Ng=70. Resolution of the distortion band:
1/3 pixel, resolution of control points: 1 pixel.



